Directory Image
This website uses cookies to improve user experience. By using our website you consent to all cookies in accordance with our Privacy Policy.

Protein methylation

Author: Sabrina Rey
by Sabrina Rey
Posted: Sep 04, 2015

The transfer of one-carbon methyl groups to nitrogen or oxygen (N- and O-methylation, respectively) to amino acid side chains increases the hydrophobicity of the protein and can neutralize a negative amino acid charge when bound to carboxylic acids. Methylation is mediated by methyltransferases, and S-adenosyl methionine (SAM) is the primary methyl group donor. Methylation occurs so often that SAM has been suggested to be the most-used substrate in enzymatic reactions afterATP. Additionally, while N-methylation is irreversible, O-methylation is potentially reversible.Methylation is a well-known mechanism of epigenetic regulation, as histone methylation and demethylation influences the availability of DNA for transcription. Amino acid residues can be conjugated to a single methyl group or multiple methyl groups to increase the effects of modification.The transfer of one-carbon methyl groups to nitrogen or oxygen (N- and O-methylation, respectively) to amino acid side chains increases the hydrophobicity of the protein and can neutralize a negative amino acid charge when bound to carboxylic acids. Methylation is mediated by methyltransferases, and S-adenosyl methionine (SAM) is the primary methyl group donor. Methylation occurs so often that SAM has been suggested to be the most-used substrate in enzymatic reactions afterATP. Additionally, while N-methylation is irreversible, O-methylation is potentially reversible.Methylation is a well-known mechanism of epigenetic regulation, as histone methylation and demethylation influences the availability of DNA for transcription. Amino acid residues can be conjugated to a single methyl group or multiple methyl groups to increase the effects of modification.The transfer of one-carbon methyl groups to nitrogen or oxygen (N- and O-methylation, respectively) to amino acid side chains increases the hydrophobicity of the protein and can neutralize a negative amino acid charge when bound to carboxylic acids. Methylation is mediated by methyltransferases, and S-adenosyl methionine (SAM) is the primary methyl group donor. Methylation occurs so often that SAM has been suggested to be the most-used substrate in enzymatic reactions afterATP. Additionally, while N-methylation is irreversible, O-methylation is potentially reversible.Methylation is a well-known mechanism of epigenetic regulation, as histone methylation and demethylation influences the availability of DNA for transcription. Amino acid residues can be conjugated to a single methyl group or multiple methyl groups to increase the effects of modification.The transfer of one-carbon methyl groups to nitrogen or oxygen (N- and O-methylation, respectively) to amino acid side chains increases the hydrophobicity of the protein and can neutralize a negative amino acid charge when bound to carboxylic acids. Methylation is mediated by methyltransferases, and S-adenosyl methionine (SAM) is the primary methyl group donor. Methylation occurs so often that SAM has been suggested to be the most-used substrate in enzymatic reactions afterATP. Additionally, while N-methylation is irreversible, O-methylation is potentially reversible.Methylation is a well-known mechanism of epigenetic regulation, as histone methylation and demethylation influences the availability of DNA for transcription. Amino acid residues can be conjugated to a single methyl group or multiple methyl groups to increase the effects of modification.http://www.creative-proteomics.com/services/Methylation.htm

About the Author

Http://www.creative-proteomics.com/services/Methylation.htm

Rate this Article
Leave a Comment
Author Thumbnail
I Agree:
Comment 
Pictures
Author: Sabrina Rey

Sabrina Rey

Member since: Sep 04, 2015
Published articles: 1

Related Articles