- Views: 1
- Report Article
- Articles
- Writing
- Article Marketing
The Chain Rule of Conditional Probabilities

Posted: Dec 18, 2021
The Chain Rule of Conditional Probabilities is also called the general product rule. It allows the calculation of any number of the associate distribution of a set of random variables. It permits by using only conditional probabilities.
The Chain Rule is very helpful in the study of Bayesian networks that define a probability distribution in terms of conditional probabilities. In this article, we will understand the Chain Rule in detail.
DescriptionConditional probability arises:
- When the probability of occurrence of a specific event changes
- When one or more conditions are satisfied.
- These conditions once more are events.
- In technical terms, if A and B are two events then the conditional probability of A w.r.t B is denoted by P (A|B).
- Therefore, when we speak in terms of conditional probability, just for an instance, we make a statement corresponding to "The probability of event A given that B has previously happened".
If A and B are independent events
From the definition of independent events, the occurrence of event A is not dependent on event B. Therefore P (A|B) = P (A).
If A and B are mutually exclusive
As A and B are disjoint events, the probability that A will occur when B has already occurred is 0. Therefore, P (A|B) = 0
Conditional probability of P (A|B) is undefined when P (B) =0. That is acceptable as if P (B) =0. It means that event B never occurs. Therefore, it does not make sense to talk about the probability of A given B.
If A and B are two events in a sample space S, then the conditional probability of A given B is defined as
P (A|B) =P (A?B) P (B), when P (B)>0.
The Chain ruleWe can rearrange the formula for conditional probability to get the Chain rule:
P (A, B) = p (A|B) p (B)
We can range this for three variables:
P(A,B,C) = P(A| B,C) P(B,C) = P(A|B,C) P(B|C) P(C)
and in general to n variables:
P(A1, A2, …, An) = P(A1| A2, …, An) P(A2| A3, …, An) P(An-1|An) P(An)
In general, we refer to this as the chain rule.
This formula is particularly important for Bayesian Belief Nets. It delivers a means of calculating the full joint probability distribution. The conditional probability of the aforementioned is a probability measure. Therefore, it fulfills probability axioms. In specific,
Axiom 1: For any event A, P (A|B)?0.
Axiom 2: Conditional probability of B given B is 1, i.e., P (B|B) =1.
Axiom 3: If A1,A2,A3,? are disjoint events, then P(A1?A2?A3?|B)=P(A1|B)+P(A2|B)+P(A3|B)+?
For more details visit:https://www.technologiesinindustry4.com/2021/12/the-chain-rule-of-conditional-probabilities.html
About the Author
Mansoor Ahmed Chemical Engineer,Web developer
Rate this Article
Leave a Comment
